Mathematics (SET)

- 1. For sets A, B, C and D, he equation $A \times B - C \times D = (A-C) \times (B-D)$ is
 - (A) True if $C \subseteq A \& D \subseteq B$
 - (B) False if $C \subseteq A \& D \subseteq B$
 - (C) Always true (D) None of these
- 2. Let $f: A \to B$ be a function and let $f^{-1}(B) = \{x : f(x) \in B\}.$ Then choose the correct statement.
 - (A) $f(f^{-1}(B)) = B$ (B) $f^{-1}(f(A)) = A$
 - (C) $B \subseteq f(f^{-1}(B))$ (D) $f(f^{-1}(B)) \subseteq B$
- 3. $f: R \to R$ given by $f(x) = 2x + \sin x$ is (A) 1-1 & not onto (B) onto & not 1-1
 - (C) 1-1 & onto (D) neither 1-1 nor onto
- 4. How many of the functions |x|, $|x|^2$, $|x|^3$ and $|x|^5$ are not differentiable at 0?
 - (A) 1 (B) 2 (C) 3 (D) 4
- 5. Let $f: X \to Y$ be a continuous function where X and Y are metric spaces and if $E \subseteq X$, then
 - (A) $f(\overline{E}) \subseteq f(E)$ (B) $f(\overline{E}) = f(E)$
 - (C) $\overline{f(E)} \subseteq f(\overline{E})$ (D) $\overline{f(E)} \subset f(\overline{E})$
- Choose the wrong statement.
 - (A) It is possible that the countable intersection of open sets is an open set.
 - (B) It is possible that the countable union of closed sets is a closed set.
 - (C) The countable union of open sets is always an
 - (D) The countable intersection of open sets is never an open set.
- 7. For a set A, if the closure is denoted by \overline{A} , then which statement is always true?
 - (A) $\overline{A \cap B} = \overline{A \cap B}$
 - (B) $\overline{A \cap B} \neq \overline{A \cap B}$
 - (C) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
 - (D) $\overline{A \cap B} \supseteq \overline{A} \cap \overline{B}$
- 8. Consider the set $A = \{1, 2, 3, 4\}$ as a subset of Real Line R with usual topology T. Among the following statements, which all can be used to observe that A is a closed set?
 - Any finite set in (R, T) is closed.
 - (ii) A contains all its limit points.

- (iii) The complement of A is an open set.
- (A) (i) & (ii) (B) (ii) & (iii) (C) (i) & (iii)
- (D) All of them.

9. Let
$$f: R \to R$$
 be defined as
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$
 Then

- (A) f is continuous and differentiable everywhere
- (B) f is continuous everywhere and differentiable at non-zero real numbers
- (C) f is neither continuous nor differentiable at real points
- (D) f is continuous and differentiable at all nonzero points
- 10. The number of real roots of $\frac{x}{100} = \sin x$ is A) 61 (B) 62 (C) 63 (D) 64o points
 - (C) f is neither continuous nor differentiable
 - (D) f is continuous and differentiable only at non zero points
- 11. Numbers can be rational, irrational, algebraic or transcendental.

How many properties the number π has?

- (A) 0 (B) 1 (C) 2 (D) 3
- 12. The number of real roots of $\frac{x}{100} = \sin x$ is A) 61 (B) 62 (C) 63 (D) 64
- 13. The number of real roots of $\log x = x$ is A) 0 (B) 1 (C) 2 (D) Data insufficient
- 14. Let $f: R \to R$ be defined as

$$f(x) = \begin{cases} x & \text{if x is rational} \\ 0 & \text{if x is irrational. Then} \end{cases}$$

- (A) f is continuous at all rationals
- (B) f is continuous at all irrationals
- (C) f is continuous at x = 0 and has a discontinuity of 1st kind at other points
- (D) f is continuous at x = 0 and has a discontinuity of 2nd kind at other points
- Let X and Y be topological spaces. Is it possible to have continuity for any function $f: X \to Y$ by choosing suitable topologies on X and Y?
- Let X and Y be topological spaces. Is it possible that no function $f: X \to Y$, other

than the identity function, be continuous by choosing suitable topologies on X and Y?

- 17. Let $f, g: R \to R$ be defined by $f(x) = \frac{1}{\sqrt{|x| x}}$ and $g(x) = \frac{1}{\sqrt{x |x|}}$. Then
 - (A) dom f = dom g (B) $dom f = \phi, dom g \neq \phi$
 - (C) $dom f \neq \phi, dom g \neq \phi$
 - (D) $dom f \neq \phi, dom g = \phi$
- 18. Domain of the function $f(x) = \sin^{-1}(\log_3 x)$ is (A) [0, 3] (B) $\left[\frac{1}{3}, 1\right]$ (C) $\left[\frac{1}{3}, 3\right]$ (D) [1, 3]
- 19. $f(x) = \log \left[\frac{1+x}{1-x} \right]$ satisfies the equation
 - (A) $f(x + \tilde{2}) 2\tilde{f}(x + 1) f(x) = 0$
 - (B) f(x) + f(x+1) = f(x(x+1))
 - (C) $f(x_1)f(x_2) = f(x_1 + x_2)$
 - (D) $f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right)$
- 20. Let $\{x_n\}$ and $\{y_n\}$ sequences such that $\{x_n + y_n\}$ is convergent. Which of the following is the most suitable statement?
 - (A) Both $\{x_n\}$ and $\{y_n\}$ are convergent sequences
 - (B) At least one of $\{x_n\}$ and $\{y_n\}$ will be a convergent sequence
 - (C) Neither $\{x_n\}$ nor $\{y_n\}$ are convergent sequences
 - (D) None of these.
- 21. Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences. Then choose the most correct statement.
 - (A) $\{x_n + y_n\}$ is a convergent sequence
 - (B) $\{x_n y_n\}$ is a convergent sequence
 - (C) Both $\{x_n + y_n\}$ and $\{x_n y_n\}$ are convergent sequences
 - (D) Nothing can be said about the convergence of the sequences $\{x_n + y_n\}$ and $\{x_n y_n\}$.
- 22. Let $f, g: R \to R$ be bounded functions and let $A, B \subseteq R$.
 - Let $\mathbf{p} = \sup\{x : (f+g)(x), x \in A\}$
 - $\mathbf{q} = \sup\{x : (f)(x), x \in A\}$ and
 - $\mathbf{r} = \sup\{x : (g)(x), x \in A\}.$ Then
 - $(A) p \le q + r$
 - (B) $p \ge q + r$
 - $(\mathbf{C})\ \mathbf{p} = \mathbf{q} + \mathbf{r}$
 - (D) \mathbf{p} can not be compared with $\mathbf{q} + \mathbf{r}$.

- 23. Let $f, g : R \to R$ be bounded functions and let $A, B \subseteq R$.
 - Let $\mathbf{p} = \inf\{x : (f+g)(x), x \in A\}$
 - $\mathbf{q} = \inf\{x : (f)(x), x \in A\}$ and
 - $\mathbf{r} = \inf\{x : (g)(x), x \in A\}.$ Then
 - $(A) p \leq q + r$
 - $(B) p \ge q + r$
 - $(\mathbf{C})\ \mathbf{p} = \mathbf{q} + \mathbf{r}$
 - (D) p can not be compared with q + r.
- 24. For $x \in R$, let $f_n(x) = \frac{x^{2n}}{1 + x^{2n}}$, $n \in N$ and let

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Choose the correct statement about f.

- (A) f is conitinuous in (-2, 0)
- (B) f is conitinuous in (-1, 2)
- (C) f is conitinuous in (1, 2)
- (D) f is conitinuous in (0, 2)
- 25. For $n = 1, 2, 3, \dots$, define

$$f_n(x) = \begin{cases} n^2 x & x \in (\frac{1}{n}, \frac{2}{n}) \\ 0 & \text{otherwise in } [0, 1]. \end{cases}$$

Then which of the following is true?

(A)

$$\int_{0}^{1} f_{n}(x)dx < 2 \quad \forall n$$

(B)
$$\int_{0}^{1} f_{n}(x)dx > 2 \quad \forall n$$

(C)

$$\int_0^1 f_n(x)dx = \frac{5}{2} \text{ where } f(x) = \lim_{n \to \infty} f_n(x)$$

(D)

$$\int_{0}^{1} f_n(x) dx = 1 \text{ where } f(x) = \lim_{n \to \infty} f_n(x)$$

- 26. $\lim_{x\to\infty} x^{2011} e^{-x}$ is
 - (A) 0
 - (B) 1
 - (C) 2011
 - (D) ∞

27. Let [a_b] and [c, d] be two intervals. Then

(A) Any function from one interval to the other is continuous.

(B) Any function from one interval to the other is invertible.

(C) There exists a function from one to the other such that it is 1-1 and onto and both the function and it's inverse are continuous.

(D) It is impossible to find a continuous function as mentioned in (C).

28. Let

$$f(x) = \left\{ \begin{array}{ll} 0 & \text{if x is irrational} \\ \frac{1}{q} & \text{if x is rational and} = \frac{p}{q}. \end{array} \right.$$

Then $\lim_{x\to \frac{1}{2}} f(x) =$ (A) 0 (B) $\frac{1}{2}$ (C) 2 (D) Limit does not exist.

29. For the function in the previous question, $\lim_{x\to\sqrt{2}} f(x) =$

(A) $\sqrt{2}$ (B) $\frac{1}{\sqrt{2}}$ (C) 0 (D) Limit does not exist.

30. If $\int_0^x f(t)dt = x + \int_x^1 f(t)dt$ then $f(1) = (\mathbf{A}) \frac{1}{2} (\mathbf{B}) \frac{-1}{2} (\mathbf{C}) 1 (\mathbf{D}) -1$

31.

$$\lim_{n\to\infty} \{\sqrt{(n^2+n)} - n\} \text{ is equal to}$$

(A) 0 (B) 1 (C) $\frac{1}{\sqrt{2}}$ (D) ∞

32.

$$\lim_{n\to\infty} \{\sqrt{(n^2+n)} - n\} \text{ is equal to}$$

(A) 0 (B) 1 (C) $\frac{1}{\sqrt{2}}$ (D) ∞

33.

$$\int_{-3}^{7} |x+1| dx =$$

(A) 30 (B) 31 (C) 32 (D) 34

If [x] is the greatest integer function,

$$\int_{-7}^{17} (x - [x]) dx =$$

(A) 10 (B) 11 (C) 12 (D) None of these

35. Let $f, g: R \to R$ be functions.

Let $A = \{x : f(x) = 0\}$

and $B = \{x : g(x) = 0\}$. Then $A \cap B =$

 $(\mathbf{A}) \left\{ \mathbf{x} : f(\mathbf{x}) \times g(\mathbf{x}) = 0 \right\}$

(B) $\{x : f(x) + g(x) = 0\}$

(C) $\{x: f(x)^2 + g(x)^2 = 0\}$

(D) $\{x : f(x) = 0 = g(x)\}$

36. Let $f, \dot{g}: R \to R$ be functions.

Let $A = \{x : f(x) = 0\}$

and $B = \{x : g(x) = 0\}$. Then $A \cup B =$

 $(\mathbf{A}) \{ \mathbf{x} : f(\mathbf{x}) \times g(\mathbf{x}) = 0 \}$

(B) $\{x : f(x) + g(x) = 0\}$

(C) $\{x: f(x)^2 + g(x)^2 = 0\}$

(D) $\{x : f(x) = 0 = g(x)\}$

37. If

$$p = \lim_{x \to 0} x \sin \frac{1}{x} \text{ and } q = \lim_{x \to \infty} x \sin \frac{1}{x},$$

then

(A) p = 0 & q = 0

(B) p = 0 & $q = \infty$

(C) p = 0 & q = 1

(D) p = 1 & $q = \infty$

38. Consider the sequence $\{x_n\}$ where

 $x_1 = 1, x_2 = 2 \text{ and } x_{n+2} = x_{n+1} + x_n \forall n \in N.$ Then

(A) The sequence $\{x_n\}$ is convergent to $\frac{5}{3}$

(B) The sequence $\{x_n\}$ is divergent

(C) The sequence $\{x_n\}$ is convergent to $\frac{9}{5}$

(D) The sequence $\{x_n\}$ is convergent to some other real number.

39. Consider the sequence $\{x_n\}$ where

 $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n} \, \forall n \in \mathbb{N}$. Then

(A) The sequence $\{x_n\}$ is convergent to $\sqrt{2}$

(B) The sequence $\{x_n\}$ is convergent to $\sqrt{3}$

(C) The sequence $\{x_n\}$ is convergent to 2

(D) The sequence $\{x_n\}$ is divergent.

40. Let $A = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} \subseteq R$.

Let us consider the properties

(i)Closedness, (ii)Compactness, (iii)Boundedness. Then A satisfies

(A) (i) and (iii)

(B) (ii) and (iii)

(C) only (iii)

(D) (i), (ii) and (iii)

41. The limit of the series
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots =$$
 (A) 1 (B) $\frac{3}{2}$ (C) 2 (D) None of these

42. Choose the divergent series.

$$(\mathbf{A}) \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

$$(\mathbf{B}) \sum_{n=1}^{\infty} \frac{1}{n \log(n+1)}$$

(C)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n-1} - \sqrt{n}}{n}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

43. Which of the following sequence is convergent for all x in [0, 1], but not uniformly convergent on [0, 1]?

$$(\mathbf{A}) \, \left\{ \frac{\sin nx}{\sqrt{n}} \right\}$$

$$(\mathbf{B}) \left\{ \sin nx \right\}$$

$$(\mathbf{C}) \left\{ x^n (1+x)^{-n} \right\}$$

(D)
$$\left\{x^n\right\}$$

44. If $\{\{1,2\},\{3,4,5,6\},\{7,8\}\}$ is a partition of the set $A=\{1,2,3,4,5,6,7,8\}$ then what is the number of ordered pairs in the equivalence relation on A corresponding to the partition?

45. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}$$
 then $A^{101} = \begin{pmatrix} \mathbf{A} \\ \mathbf{A} \end{pmatrix}$ (B) $A - I$ (C) A (D) $(a + b)(A - I)$

 $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n =$

(A) 1 (B) 0 (C)
$$e$$
 (D) ∞

47.
$$\lim_{n\to\infty} \left(n^{\frac{1}{n}} - 1\right)^n =$$
(A) 1 (B) 0 (C) e (D) ∞

48.
$$\lim_{x \to 0} \left(\cos x \right)^{\cot x} =$$

(A) 1 (B) 0 (C)
$$e$$
 (D) ∞

49. If $f(x) = x - x^2 + x^3 + \dots + to \infty$ for |x| < 1, then $f^{-1}(x) = 1$

(A)
$$x$$
 (B) $\frac{x}{1-x}$ (C) $\frac{1-x}{x}$ (D) $\frac{x}{1+x}$

50. What is the value of x for which $\sum_{n=1}^{20} (x-n)^2$ is the least? (A) 1 (B) 10 (C) 20 (D) None

51. How many real roots the quadratic equation $(x-2)^2 + (x-5)^2 + (x-7)^2 = 0$ has? (A) 1 (B) 2 (C) 3 (D) None

52. If x satisfies the equation $x^2 - 2\cos x + 1 = 0$, then the value of $x^n + \frac{1}{x^n}$ is

(A) $2\cos nx$ (B) $2^n\cos nx$

(C) $2\cos^n x$ (D) $2^n \cos^n x$

53. The spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 - 24x - 40y - 18z + 225 = 0$

(A) touch internally

(B) touch externally

(C) do not touch each other

(D) intersect each other

54. If $f(x) = \min\{x, x^2\}$ for every real value of x, then which one of the following is not true?

(A) f is continuous for all x

(B) f is differentiable for all x

(C) f'(x) = 1 for all x

(D) one of the above statement is wrong

55. Consider the intervals

A = [0, 1], B = [0, 1), C = (0, 1] and D = (0, 1) as subsets of R with usual topology.

Between which two sets it is possible to have a homeomorphism? Give reason for your answer.

56. If z satisfies $\left|z + \frac{1}{z}\right| = 4$, then the maximum value of |z| is $(\mathbf{A}) \ 2 - \sqrt{5} \quad (\mathbf{B}) \ 2 + \sqrt{5}$

(C) $4 - \sqrt{5}$ (D) $4 + \sqrt{5}$

57. The sum $^{100}C_0 + ^{101}C_1 + ^{102}C_2 + \cdots + ^{150}C_{50} =$ (A) $^{200}C_{100}$ (B) $^{201}C_{50}$

(C) $^{201}C_{100}$ (D) $^{151}C_{50}$